

Características Técnicas

Força Teórico

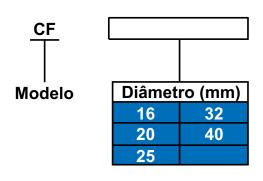
Diâmetro mm	Ação	Área do	· · · · · · · · · · · · · · · · · · ·									
	3	Pistão cm²	1	2	3	4	5	6	7			
Ø16	Empurrando	2.0	_	4	6	8	10	12	14			
Ø20	Empurrando	3.14	_	6.2	9.4	12.5	15.7	18.8	21.9			
Ø25	Empurrando	4.9	_	9	14	19	24	29	34			
Ø32	Empurrando	8.0	_	16	24	32	40	48	56			
Ø40	Empurrando	12.5	_	25	37.5	50	62.5	75	87.5			

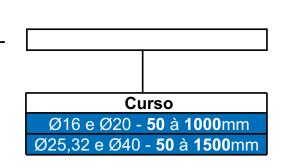
Note: Acima são dados teóricos. Considere a resistência de fricção e a mecânica.

A eficiência do valor deve ser adicionado ao cálculo antes de usar. (Cerca de 70% ~ 80%)

O Especificação

Item Diâm	etro (mm)	Ø16	Ø20	Ø25	Ø32	Ø40		
Operação	Dupla Ação							
Fluido		Ar C	Comprin	nido				
Pressão de Trabalho			1.5 ~ 7					
Pressao de Traballio	kgf/cm²(kpa)	(150 ~ 700)						
Máxima Pressão Admissível	kgf/cm²(kpa)	8 (800)						
Temperatura de Trabalho	°C	0 ~ 60						
Velocidade de Trabalho	mm/sec	50 ~ 500						
Lubrificação	Não Necessita							
Amortecedor de final de Curs	Amortecimento Regulável							
Rosca de Alimentação	M5 G 1/8" G 1/4"							
Embolo magnético	Padrão							

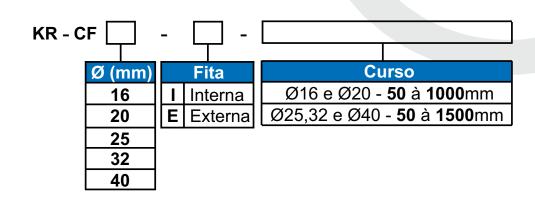

O Peso Padrão


Diâmetro	Peso Curso 0	Adicionar a cada Milimetro de curso
Ø16	0.25	0.1
Ø20	0.47	0.15
Ø25	0.74	0.197
Ø32	1.62	0.354
Ø40	2.10	0.415

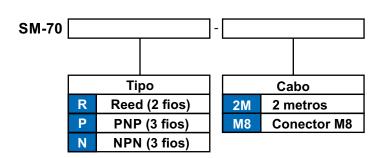
Unit: kg

Unit: kgf

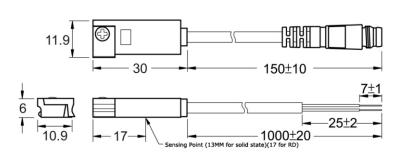
Codificação



Kit Reparo

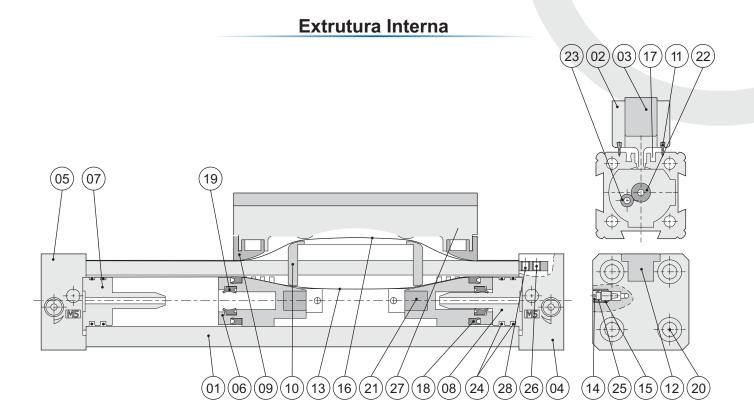


Kit Reparo Fita


Sensor Aplicável

Exemplo: SM-70R-2M SM-70N-M8

Dimensional -



Montagem



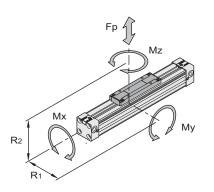
• Components and Material list


No.	Item	Material	No.	Item	Material
01	Corpo	Liga de Alumínio	15	Bucha	Aço Inox
02	Carro Deslizante	Liga de Alumínio	16	Cinta	Aço Inox
03	Base de Fixação	Liga de Alumínio	ga de Alumínio 17		Imã de Borracha
04	Tampa Direita	Liga de Alumínio	Liga de Alumínio 18		NBR
05	Tampa Esquerda	Cobre	19	Vedação Amortecimento	NBR
06	Embolo	POM 20		Parafuso	Aço
07	Amortecedor (Esquerdo)	POM	21	Embolo	SCM
08	Amortecedor (Direito)	POM	22	O-Ring	NBR
09	Raspador	POM	23	O-Ring	NBR
10	Raspador	POM	24	O-Ring	NBR
11	Vedação	NBR	25	O-Ring	NBR
12	Placa	*		Parafuso	Aço
13	Cinta	a Aço Inox		Parafuso	Aço
14	Regulador de Amortecimento	Cobre	28	Parafuso	Aço

Tipos de Montagem

Montagem por Pés

Montagem pelo corpo

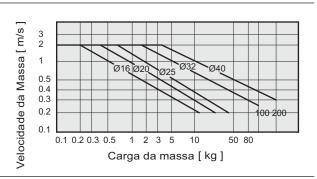


Possui Parafuso Roscado para fixação, não retire esse parafuso.

O Carga e Momentos Permitidos

Os momentos múltiplos podem ser criados dependendo do sentido de montagem, da carga do centro de gravidade.

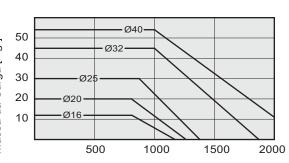
> $Mx = FpxR_1$ $My = Fp \times R_2$ $Mz = Fp \times R_1$



Modelo	Ø	Curso	Força Teorica	Max. Carga(N)	Max. Momento (Nm)				
Wodelo	(mm)	(mm)	6 bar	Fp	Mz	Mx	My		
CF	16	50~1000	121	120	0.5	0.45	4		
	20	50~1000	189	200	1.2	1.2	8		
	25	50~1500	294	300	3	1.5	15		
	32	50~1500	482	450	5	3	30		
	40	50~1500	754	750	8	6	60		

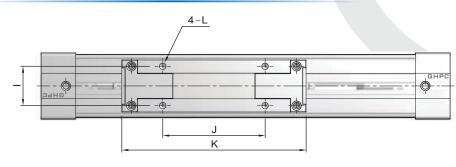
Velocidade da Carga da Massa para o Amortecimento Regulável

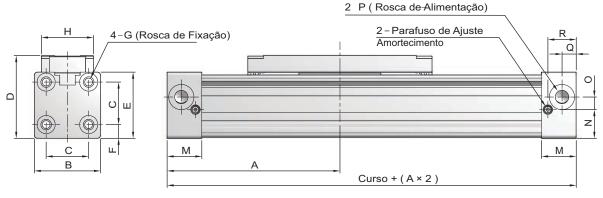
O Amortecimento no final do curso do cilindro pode ser ajustável. Para garantir qua não cause danos na extrutura do cilindro.

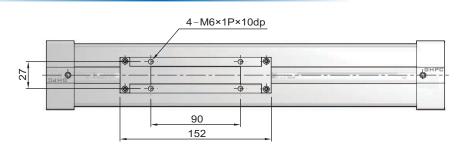

Quando operado com a carga maior que a linha do grafico. Deve ser adicionado um amortedor e fim de curso externo ao cilindro.

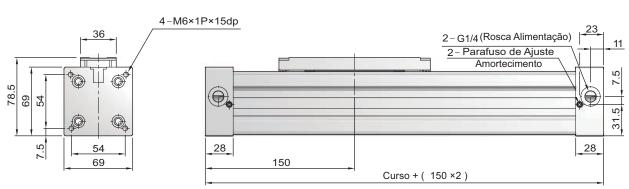
O Carga da Massa para o espaçamento do suporte.

Para uma operação com cilindro de curso longo o cilindro pode flambar dependendo da carga aplicada. Nesse caso use um suporte central para evitar que o cilindro comece a flambar.



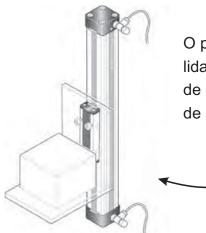

Espaçamento entre o suporte L [mm]


Dimensional CF16, CF20, CF25 e CF32

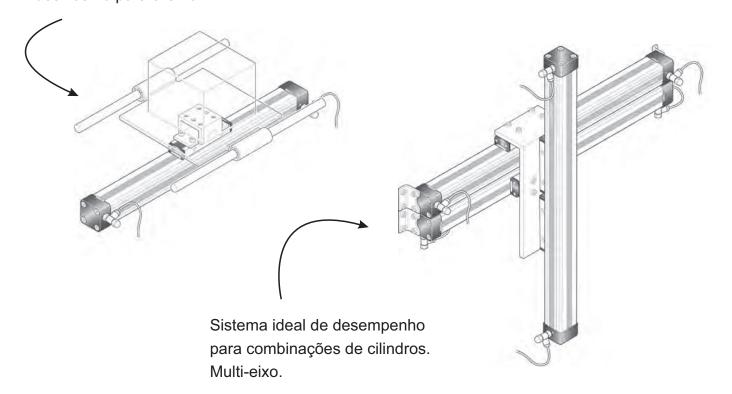


Modelo	A	В	С	D	Е	F	G	н	1	J	K	L	M	N	0	Р	Q	R
CF16	65	30	18	38	30	6.4	M3x0.5Px9dp	22	16.5	36	69	M4x0.7Px6dp	14	13.4	3.5	M5x0.8p	4	10
CF20	80	37	24	46	37	6	M4x0.7Px12dp	28	20	50	90	M4x0.7Px6dp	22	17	5	G 1/8	9	18
CF25	100	42	27	52.5	42	8.7	M5x0.8Px15dp	33	25	65	117	M5x0.8Px8dp	22	18.2	8	G 1/8	9	18
CF32	125	54	36	66.5	55	9.5	M6x1Px15dp	36	27	90	152	M6x1Px10dp	25.5	24	9	G 1/4	11	21

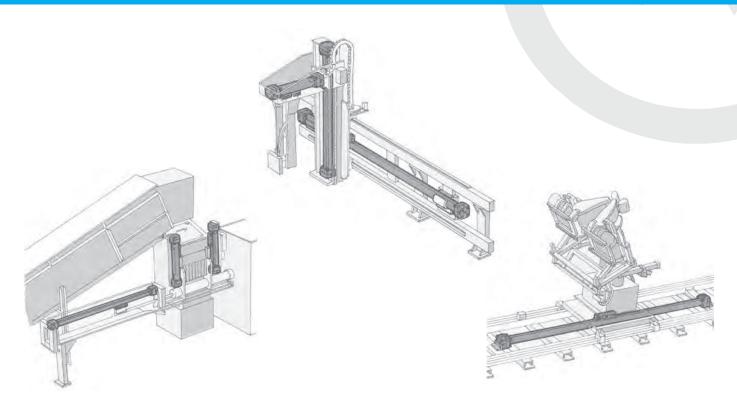
Dimensional CF40



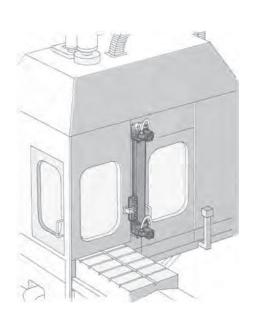
Exemplos de Aplicação

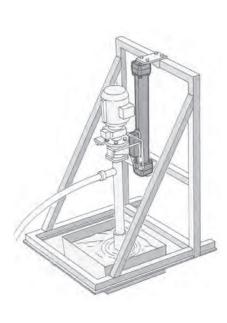


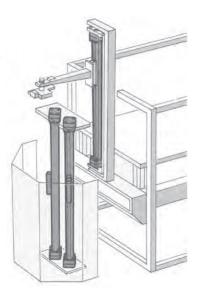
O pistão consegue lidar com alta capacidade de carga, sem necessidade de guias auxiliares.


Com essa construção, permite também que dois cilindros trabalhem em sincronia.

Ao usar guias externas, a montagem do gancho serve para compensar desvios no paralelismo.







Exemplos de Aplicação em Máquinas

