
Características Técnicas											
Material das guias	DIN 58 CrMoV4										
Material dos patins	DIN 16 MnCr5										
Ruído	silencioso										
Dureza das guias e patins	58 à 62 HRc										
Temp. máx. de trabalho	-5 à 70°C										
Atrito	baixo										

1 - CONSTRUÇÃO DAS GUIAS LINEARES

1.1 - Características de construção

O posicionamento das esferas foi projetado a fim de se obter um ângulo de contato de 45°, o que permite deslocar uma carga com forças de atuação de diferentes posições: carga radial de compressão, carga radial de tração e cargas laterais. A série GH pode alcançar uma carga pré -definida (Pré -carga), para aumentar a rigidez em quatro direções de forças (vide desenho acima), mantendo-se um baixo atrito de deslizamento. Isto torna-se adequado para movimentos que requerem alta precisão e rigidez. O posicionamento também permite que a graxa lubrificante seja distribuída uniformemente a cada volta de recirculação das esferas, resultando em movimentos suaves e uma longa vida útil.

1.2 – Material de fabricação

Guias: DIN 58 CrMoV4 - Patins: DIN 16MnCr5

1.3 – Movimento suave com baixo ruído

O projeto eficiente e simplificado das guias com uma periódica lubrificação garantem movimentos suaves e silenciosos.

2 - DEFINIÇÃO DE CARGA ESTÁTICA (Co)

Quando uma carga excessiva é aplicada em um carro parado ou em baixa velocidade, uma deformação local e permanente pode ocorrer nas esferas e consequentemente na guia. Esta deformação irá prejudicar o funcionamento suave das guias e comprometer todo o desempenho do equipamento. A capacidade de carga estática (Co) defini-se como uma carga constante e unidirecional cuja soma das deformações permanentes das esferas e da guia equivale 0,0001 vezes o diâmetro da esfera.

2.1 – Fator estático de segurança (fs)

O fator estático de segurança (fs) é a classificação da carga estática (Co) em relação à carga de trabalho a ser aplicada na guia. O fator estático de segurança pode aplicado na guia. O fator estático de segurança pode ser avaliado conforme a tabela abaixo:

$$fs = \frac{C_o}{P_c}$$
 ou $fs = \frac{M_o}{M}$

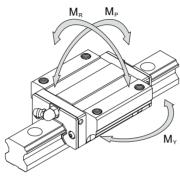
fs : fator estático de segurança

Co: capacidade de carga estática (kgf)

Mo: momento estático permissível (kgf.m)

 P_c : carga de trabalho (kgf) M: momento (kgf.m) (calculado) Valores a serem considerados para Fator estático de segurança

Tipo de máquina	Condição de carga	fs
Máquina Industrial	Condição normal de carga	1.0 ~ 1.3
Regular	Com impacto e vibração	2.0 ~ 3.0
	Condição normal de carga	1.0 ~ 1.5
Máquina ferramenta	Com impacto e vibração	2.5 ~ 7.0



3 – DEFINIÇÃO DE CARGA DINÂMICA (C)

As esferas e guias sofrem cargas repetitivas e intermitentes e certamente com o decorrer do tempo haverá escamação por fadiga nas guias. Ensaios dinâmicos com grupo de guias idênticas e nas mesmas condições de trabalhos foram realizados percorrendo 50km, resultado em valores de cargas dinâmica. Estes valores serão aplicados em cálculo para dimensionamento das guias. O valor de (C) está especificado nas tabelas de dimensões de cada patins .

3.1 - Momento estático permissível (Mo)

Quando um momento é aplicado em uma guia linear, surgem forças que não serão distribuídas uniformemente na guia. No sistema de guia linear o momento estático permissível é definido em três direções Mp, My e Mr (vide figura abaixo).

3.2 - Cálculo de vida útil (L)

A vida nominal de uma guia linear pode ser afetada por várias condições de trabalho. Fatores como temperatura e condições de carga (com ou sem impactos e vibrações), irão influenciar na durabilidade. Também serão considerados nos cálculos itens como carga e capacidade dinâmica. Conforme fórmula a seguir:

fit: fator dureza

$$L = \left[\frac{f_H f_L f_C}{f_W} \cdot \frac{C}{P_C}\right]^3 \cdot 50 \text{ Km}$$

fr: fator temperatura

 fc : fator contato

fw: fator carga

L: vida útil (km)

C : carga dinâmica (kgf)

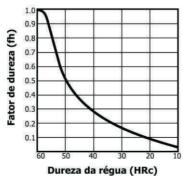
Pc: carga (kgf)

3.3 - Cálculo de vida útil em horas (Lh)

É recomendado também expressar a vida útil em horas. A fórmula a seguir poderá ser utilizada quando curso e ciclos são constantes:

Vida útil em horas

$$Lh = \frac{L \cdot 10^3}{2 \cdot ls \cdot n \cdot 60}$$

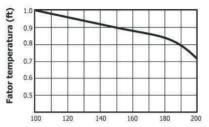

Lh: hora de vida útil (hr)

L: vida útil (km) ls : curso (m)

n : ciclo por minuto

3.4 - Fator dureza (fh)

Para garantir um melhor desempenho das guias, as esferas e guias devem possuir uma dureza de 58 a 62HRc. Quando não forem atingidos estes valores, um fator de dureza deve ser multiplicado pela Carga Dinâmica (C) e Carga Estática (Co) a ser considerados nos cálculos.



3.5 - Fator temperatura (ft)

Quando a temperatura de trabalho for maior que 70°C, a vida útil será reduzida ou até ficará comprometida, pois o patins contém peças de plástico e borracha. Para efetuar os cálculos deve se multiplicar a capacidade de Carga Dinâmica (C) e a Carga Estática (Co) pelo fator temperatura. Aplicações com temperatura maior que 70°C.

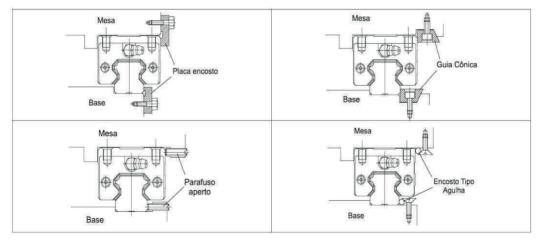
Temperatura de trabalho (°C)

3.6 - Fator de contato (fc)

Quando dois ou mais patins são usados em uma mesma guia, é difícil de obter uma distribuição de carga uniforme, isto se deve a momentos, erros na superfície ou outros fatores. Para efeito de cálculo, Carga Dinâmica (C) e Carga Estática (Co) deverão ser multiplicados pelo fator de contato.

Número de Blocos em Contato	Fator de Contato (fc)
Ĭ	1,00
2	0,81
3	0,72
4	0,66
5	0,61

3.7 - Fator de carga (fw)

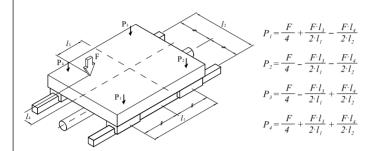

Apesar d a carga de trabalho ser obtida através de cálculo, na maioria das vezes ocorre uma carga real maior que o valor calculado. Vibração, impacto conjugados com velocidade são difíceis de serem estimados. Devido a isso temos que con siderar um fator de carga no cálculo da vida útil.

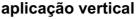
$$F = fw \cdot Fc$$
 $F = fw \cdot Fc$ $fw = fator carga$ $Fc = carga teórica$

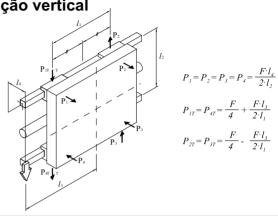
Condições de movimentação	Velocidade de Operação	fw
Sem impacto e vibração	Vel. até 15 m/min	1,0 ~ 1,2
Impacto e vibração leve	Vel. de 15 à 60 m/min	1,2 ~ 1,5
Impacto e vibração moderado	Vel. de 60 à 120 m/min	1,5 ~ 2,0
Impacto e vibração forte	Vel. maior 120 m/min	2,0 ~ 3,5

4 – MÉTODOS DE FIXAÇÃO DE GUIA LINEAR

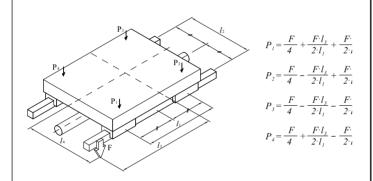
A guia e o carro podem ser deslocados quando a máquina recebe vibração ou impacto. Sob esta condição, a precisão da guia e a vida útil podem ser degrada dos. Assim, os seguintes métodos de fixação são recomendados para evitar que tal situação aconteça:

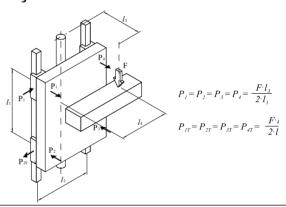






5 - FÓRMULAS PARA CÁLCULOS


aplicação horizontal



aplicação horizontal

aplicação vertical

aplicação horizontal

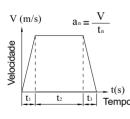
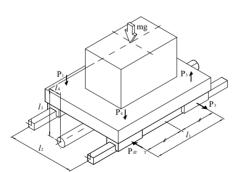



Diagrama de Velocidade

Durante aceleração

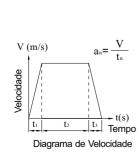
Durante aceleração Durante desaceleração
$$P_{I} = P_{4} = \frac{mg}{4} - \frac{mra_{I} \cdot l_{3}}{2 \cdot l_{I}}$$
 $P_{I} = P_{4} = \frac{mg}{4} + \frac{mra_{J} \cdot l_{3}}{2 \cdot l_{I}}$ $P_{2} = P_{3} = \frac{mg}{4} + \frac{mra_{J} \cdot l_{3}}{2 \cdot l_{I}}$ $P_{2} = P_{3} = \frac{mg}{4} - \frac{mra_{J} \cdot l_{3}}{2 \cdot l_{I}}$

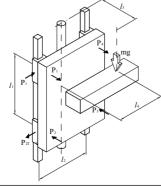
$$P_2 = P_3 = \frac{mg}{4} + \frac{m \cdot a_1 \cdot l_3}{2 \cdot l_1}$$

$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot a_1 \cdot l_4}{2 \cdot l_1}$$

$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot a_1 \cdot l_4}{2 \cdot l_1} \qquad P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot a_3 \cdot l_4}{2 \cdot l_1}$$

Em movimento uniforme
$$P_{TT} = P_{2T} = P_{3T} = P_{4T} = \frac{mg}{4}$$


Durante desaceleração


$$P_{I} = P_{4} = \frac{mg}{4} + \frac{m \cdot a_{3} \cdot l_{3}}{2 \cdot l_{I}}$$

$$P_2 = P_3 = \frac{mg}{4} - \frac{m \cdot a_3 \cdot l_3}{2 \cdot l_3}$$

$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m a_3 \cdot l_4}{2 \cdot l_1}$$

aplicação vertical

Durante aceleração

$$P_{1} = P_{2} = P_{3} = P_{4} = \frac{m \cdot (g + a_{1}) \cdot l_{3}}{2 \cdot l_{1}}$$

$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{mr(g + a_1)^r l_4}{2 \cdot l_1} \qquad P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{mr(g - a_3)^r l_4}{2 \cdot l_1}$$

Em movimento uniforme

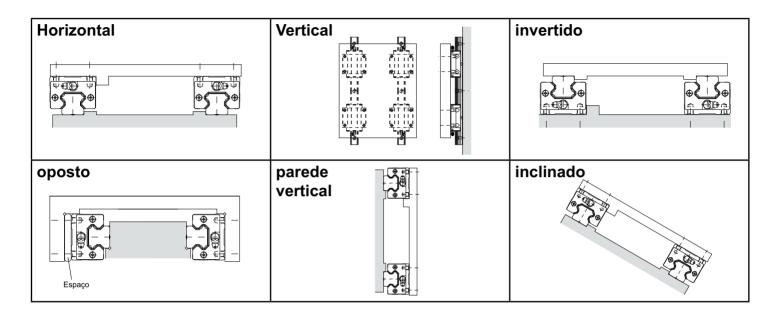
$$P_{1} = P_{2} = P_{3} = P_{4} = \frac{m \cdot g \cdot l_{3}}{2 \cdot l_{1}}$$

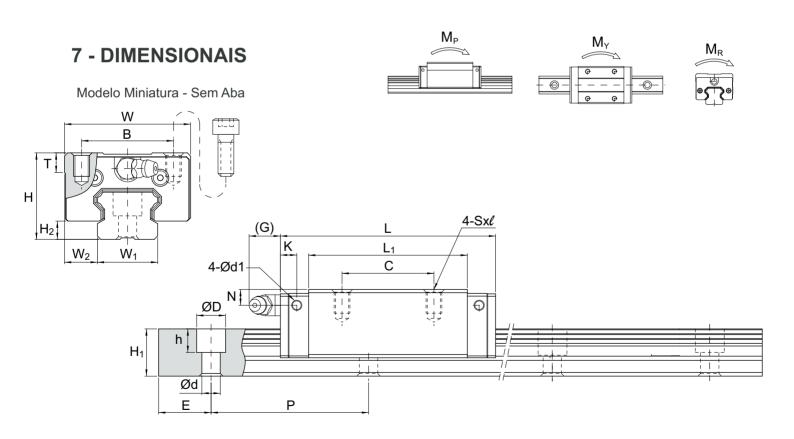
$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot g \cdot l_4}{2 \cdot l_1}$$

Durante desaceleração

$$P_1 = P_2 = P_3 = P_4 = \frac{m \cdot (g - a_3) \cdot l_3}{2 \cdot l_1}$$

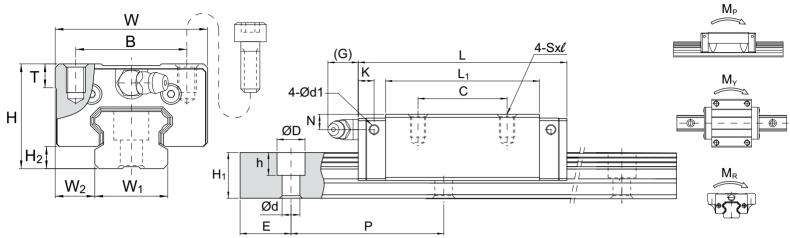
$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot (g - a_3) \cdot l_4}{2 \cdot l_1}$$



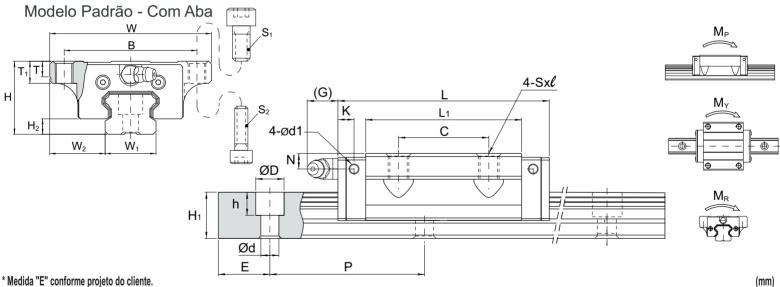


6 - FORMAS DE MONTAGEM DE GUIASLINEARES

A forma de instalação de uma guia linear depende da estrutura do equipamento ou da máquina e da direção de carga a qual esta sendo submetida.



* Medida "	edida "E" conforme projeto do cliente.															(mm)						
Modelo		w		W	П	D	_	e v I	-	١,	G	w.	u	D	_	Dybyd	Capacidade d	e carga (Kgf)	Momento estático (Kgf.m)			
Wodelo	п	VV	_	VV 2	W ₂ R ₂ B C SXI L ₁ I G W ₁ R ₁	Г	_	Dxhxd	Dinâmica C	Estática C ₀	M_{P}	M _Y	M _R									
TR07P	8	17	23.6	5	1	12	8	M2 x 2.5	18.4	3.4	Ø0.8	7	4.7	15	5	4.2 x 2.3 x 2.4	115	157	3.6	3.6	5.8	
TR09P	10	20	31.1	5.5	2.2	15	10	M3 x 3	25.8	4.4	Ø1	9	5.5	20	7.5	6 x 3.3 x 3.5	228	311	10.2	10.2	14.9	
TR12P	13	27	34.6	7.5	3	20	15	M3 x 3.6	28	5	Ø1.5	12	7.5	25	10	6 x 4.5 x 3.5	284	352	11.4	11.4	22.2	



Guias Lineares - Série TR

Modelo Padrão - Sem Aba

* Medida "																(mm)						
Modelo	н	w		W2	_	В	C	e v I	-	_	C	V	٦	10/	W ₁ H ₁	Р	Dxhxd	Capacidade d	e carga (Kgf)	Momento estático (Kgf.m)		
Wodelo	п	VV	_	VV2	H ₂	В	٥	SxI	L1	-	G	N.	a ₁	WV1				Dinâmica C	Estática C ₀	M _P	M _Y	M _R
TR15P	28	34	56.3	9.5	4.2	26	26	M4 x 5	39.3	7.2	7	3.2	3.3	15	15	60	7.5 x 5.3 x 4.5	1180	1890	12	12	14
TR20P	30	44	72.9	12	5	32	36	M5 x 6	51.3	8	12	5.8	3.3	20	18	60	9.5 x 8.5 x 6	1920	2950	23	23	29
TR25P	40	48	81.6	12.5	6.5	35	35	M6 x 8	59	10	12	5.8	3.3	23	22	60	11 x 9 x 7	2810	4240	39	39	48
TR30P	45	60	97	16	8	40	40	M8 x 10	71.4	11.7	12	6.5	3.3	28	26	80	14 x 12 x 9	3920	5780	62	62	79
TR35P	55	70	111.2	18	9.5	50	5	M8 x 12	81	12.7	11.5	8.6	3.3	34	29	80	14 x 12 x 9	5200	7550	93	93	125
TR45P	70	86	137.7	20.5	10	60	60	M10 x 17	102.5	16	13.5	10.6	3.3	45	38	105	20 x 17 x 14	8380	11790	181	181	257

* Medida "I	lida "E" conforme projeto do cliente.																				(mm)			
						_	T. L.	т	т	т	M	_	V	d	W	ш	D	Darkand	Capacidade d	Momento estático (Kgf.m)				
Modelo	П	VV	L	W ₂	H ₂	В	٥	L ₁		11	12	IN	G	N	a ₁	W ₁ H ₁	П	۲	Dxhxd	Dinâmica C	Estática C ₀	M _P	My	M _R
TR15P-A	24	47	56.3	16	4.2	38	30	39.3	7	11	7	4.3	7	3.2	3.3	15	15	60	7.5 x 5.3 x 4.5	1180	1890	12	12	14
TR20P-A	30	63	72.9	21.5	5	53	40	51.3	7	10	10	5	12	5.8	3.3	20	18	60	9.5 x 8.5 x 6	1920	2950	23	23	29
TR25P-A	36	70	81.6	23.5	6.5	57	45	59	11	16	10	6	12	5.8	3.3	23	22	60	11 x 9 x 7	2810	4240	39	39	48
TR30P-A	42	90	97	31	8	72	52	71.4	11	18	10	7	12	6.5	3.3	28	26	80	14 x 12 x 9	3920	5780	62	62	79
TR35P-A	48	100	111.2	33	9.5	82	62	81	13	21	13	8	11.5	8.6	3.3	34	2	80	14 x 12 x 9	5200	7550	93	93	125
TR45P-A	60	120	137.7	37.5	10	100	80	102.5	13	25	15	10	13.5	10.6	3.3	45	38	105	20 x 17 x 14	8380	11790	181	181	257

